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UNIQUE ERGODICITY OF SOME FLOWS 
RELATED TO AXIOM A DIFFEOMORPHISMS 

BY 

BRIAN MARCUS 

ABSTRACT 

Continuous flows, whose orbits are the unstable manifolds of certain Axiom A 
attractors, are shown to be uniquely ergodic. The approach used is symbolic 
dynamics. Equicontinuity (and lack of it) for these flows is also discussed. 

It is a result of H. Furs tenberg  [8] that the classical horocycle  flow is 

uniquely ergodic. This means that the flow has a unique invariant Borel 

probabil i ty measure.  Now the horocycle  flow is related to the geodesic flow of a 

compac t  two dimensional Riemannian manifold of constant  negative curvature  

in the following way: any two points x and y on the same horocycle  orbit are 

backwards  asymptot ic  under the geodesic flow {~,} (i.e., lira . . . .  dist. 

(~b,x, &,y) = 0). In the language of dynamical  sys tems then, the horocycle  orbits 

are the unstable manifolds for  the geodesic flow. 

In light of this, C. Pugh suggested that Furs tenberg ' s  result might be 

generalized to the variable negative curvature  case or perhaps  still more  

generally to the Axiom A case (the geodesic flow is a special type of Axiom A 

flow). That  is, suppose  that one defines a cont inuous flow (called the W u flow) 

whose orbits are the unstable manifolds of a basic set for  an Axiom A flow (see 

[16]). Is this flow uniquely ergodic? First, to even pose this question one must  

assume that the unstable manifolds are one-dimensional  and that the foliation 

of unstable manifolds (called the W" foliation) on the basic set is orientable: 

for  a flow automatical ly orients its orbits. Then one must rule out some 

immediate  counterexamples  (constant t ime suspension of Axiom A dif- 

feomorphisms)  and would probably  want to assume that the basic set is an 

attractor.  Under  these restrictions we believe that the flow is uniquely ergodic, 
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but we are unable to prove this at present. This would generalize Furstenberg's 

result. 

The purpose of this paper is to prove the analogue of the above conjecture 

for an attractor of an Axiom A diffeomorphism (as opposed to an Axiom A 

flow). These have W u foliations just as Axiom A flows do. Our main result is 

(see Section 2 for definitions): 

THEOREM 2.6. W u flows on a connected attractor for an Ax iom A dif- 

feomorphism f are uniquely ergodic. 

Again, implicit in the statement is that the W" foliation is one-dimensional 

and orientable. However, neither of these assumptions seems to be particularly 

relevant. One might be able to circumvent these assumptions by using a notion 

of transverse measure for foliations (See [14], [15]). In this context the 

analogue of our theorem would be that there is a unique (up to constant 

multiple) transverse measure for the W u foliation on a connected Axiom A 

attractor. This can probably be proved by viewing our approach in terms of 

cross-sections and suspensions. 

The measure which maximizes entropy for f (see [14]) will be the unique 

invariant measure for the W" flow, provided one has the right parametrization: 

namely, one parametrizes the orbits by the measures on unstable manifolds 

constructed in [14], [151. 

Our approach was inspired by Williams' paper [20]. The idea is to apply a 

version of the Perron-Frobenius theorem to the partition matrix for a Markov 

partition, a certain finite cover of closed "rectangles" {A,} which meet only on 

their boundaries: one can express the unstable manifold of a point x as a 

countable union of consecutive subarcs {Wj(x)}, meeting only at endpoints, 

such that each W~(x) crosses once through a rectangle Ab~,. Now 

k•l f~W~( f - °x )  : Wj (x )  
j =kq 

and if n is large enough, then for all i and q, the proportion of i's that appear in 

{b~(x)}, j = kq,. . ,  k q -  l, will be approximately the same for all x (by the 

Perron-Frobenius theorem). This means that the unstable manifolds are all 

distributed through the Markov partition in approximately the same way. Since 

the Markov partition generates (under the action of f), this will imply that the 

orbits of the W u flow are all distributed throughout the space in the same way, 

and this will yield unique ergodicity. 
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In Section 1 we place the problem in the setting of time averages. Section 2 

provides some necessary background on Axiom A diffeomorphisms. In Section 

3 we prove the main result. The last section is devoted to a discussion of a 

related property:  equicontinuity. We show that some orientable, one- 

dimensional W u foliations (those coming from Anosov diffeomorphisms) admit 

equicontinuous flows, but others don't .  

We thank R. Bowen and C. Pugh for many valuable suggestions. 

1. Unique ergodicity in terms of time averages 

Let  X be a compact  metric space and {tp, : t E R} a continuous flow (i.e., each 

~,: X ~ X is a homeomorphism,  tp,÷, = ~, o ~  and the map ( t ,x)  ~ ~k,(x) is 

continuous). The orbit of a point x is {t~,(x): t E R} and the positive semi-orbit 

is {~,(x): t -> 0}. A Borel probability measure is a measure on the Borel subsets 

of X such t ha t / z (X)  = 1. It is called invariant (for 0)  i f / z ( A )  = #(tp, A)  for  all 

Borel sets A and t E R. The flow {t~, } is called uniquely ergodic if it has exactly 

one invariant Borel probability measure. 

Our viewpoint is based on the following fact due to Kryloff  and Bogoliouboff 

[10]. 

TIME AVERAGE CRITERION 1.1. {~b,} is uniquely ergodic i[ and only i[ [or all 
continuous [unctions h : X--~ R, 

l for lim ~ h o O, (x) dt 
T ~ + ~  

exists and is constant (i.e. independent of x). 

In the following lemma we see that it really is not necessary to sample the 

time averages at all times T, nor at all points x. In fact  it is sufficient to sample 

only every so often over  just a dense set, provided that you sample regularly: 

LEMMA 1.2. Let h: X ~ R be continuous. Then 

l foT lim -~ h o ~b, ( x ) dt 
T ~ + ~  

exists and is constant provided [or all e > 0, there exist ME > 0, rE > 0 and a 

dense set X~ C X such that [or each x E X, there is an unbounded strictly 

increasing sequence {Sin(x): m = 0} satisfying 

(a) So(x)<=O<S,(x)and[oreachm >=O, Sm+,(x)-Sm(X)<-M., 
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(b) f o r e a c h m > = O ,  S ~ ( x ) - S o ( x )  ~ ,  h o O , ( x ) d t  - r~  <=e. 

PROOF. Letting e > 0 ,  choose M ' >  M. such that (IIhlI'M~)/M'< e. Let  

T _-> M' .  For  x E X~, choose m = m ( T , x ) ,  the largest integer such that S , ( x )  <- 

T. Then one can check (using (a) and the choice of M')  that 

o - h o~b,(x)dt <-_ 4e .  h tk,(x)dt  S m ( x ) - S o ( x )  j s ~  

Using this and (b) we then have 

h og, ,(x)dt  - re <-_ 5e .  

Since X~ is dense, the same estimate holds for  all x E X. This yields the lemma. 

We now discretize the process. The idea is to chop up the space X into small 

boxes and then, over  a finite time interval, count the number of times that a 

given orbit passes through each box. This will give a relative f requency of visits 

to each box. From these frequencies we can compute time averages of 

continuous functions. To do this we need a good set of boxes. Roughly, the 

boxes must be small, look like " l towboxes"  and for some dense set X ,  the 

relative f requency  with which the positive semi-orbit of x visits a given box is 

approximately independent of x E X . .  

DEFINITION 1.3. A finite collection M = { A ~ : i E  A} of subsets of X is 

6-good (for the flow ~b) if ~I), (II), and (III) hold: 

(I) M covers  X and each diam A~ < & 

There is a $-invariant ,  dense set X ,  such that 

(II) (a) For  x ~ X ,  both 

B~(x)  = <= 0 O, (x)  belongs to more than one A~ 

are discrete and non-empty (whence unbounded by ~0-invariance of X , ) .  

Labelling the elements of B ÷ ( x ) U  B_(x): 

• " < T-2(x) < r_ , (x)  < To(x)--N_0< r~(x) < r 2 ( x ) < ' . "  

(b) for  each integer j, there is b~(x) such that 

{~O,(x): t ~ [T j (x ) ,  T~+,(x)]}CAb~x,. 
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(III) For i E A there exist r~ ~ 0  with E,~A r, = I and M . - _  1 such that if 

x ~E X .  there is an increasing sequence of integers {Kin (x): m - 0 }  satisfying 

(a) Ko(x)<-<_O<K,(x)andforeachm >=O K~+,(x)-K~(x)<=M.,  

(b) for each m => 0 ]n,~(x)-r ,[<&, 

where 

#{ j  E [K0(x), K , , ( x ) -  1]: b~(x)= i} 
rl,m (x ) = Km (x ) - Ko(x ) 

We remark that (II) is required mainly for the purpose of formulating (III). 

The quantity in (III), r/,~,(x), represents the relative frequency of visits to A, 

over the time interval [T~x~(x), TK~(x)(X)]. However,  these frequencies will not 

accurately reflect actual time averages of visits to a given box unless the length 

of a visit to that box is approximately independent of x. To remedy this, we add 

another condition. 

Define 4,: X .  ~ R ÷, 6 (x)  = T , ( x ) -  To(x). We view 4) as measuring the 

length of a visit. 

DEFINITION 1.4. M is 8-great if it is both ~%good and satisfies 

(IV) if bo(x)= bo(y) then ]~b(x)-~b(y)]---~5 ~b(x). • 

REMARKS. 

(i) Letting /3, = infho,,_,~k(x), we have from (iv): if bo(x)=i then 

4,(x). 
(ii) T i . , ( x ) - T i ( x ) = c b ( ~ ( x ) )  since To(tpr,~(x))=0 and T,(~T~,(x)) = 

T . , (x ) -  Tj(x). 
(iii) [Tj.,(x) - Tj(x) - / 3 ~ ,  I _-< ~(T~+,(x) - Tj(x)) (by IV and (i) and (ii) above). 

(iv) II II-- sup  xfl,(x) < 

PROPOSITION 1.5. If for all ~ > 0  {~,} has a g-great collection, then {g.,} is 

uniquely ergodic. 

PROOF. TO show unique ergodicity we use the Time Average Criterion (1.1). 

So, let h : X ~ R be continuous. We may assume that h is not identically 0 and 

for each x 0 _-< h (x) _-< 1 (otherwise divide by lib 11 and separate out positive and 

negative parts). We verify the condition of Lemma (1.2). So let e > 0 and then 

choose 6 such that 0 <  6 < e and ] h ( x ) -  h (y ) ]<  e when d(x , y )<  & Let .~ be 

3-good. Let  X~ = X . ,  M. = H~b[I.(M.) and r. =(Ea,[3,r,)/(E[3,r~), where X . ,  
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M .  and r, are as in Definition 1,/3, as in Remark (i) and a~ = infx~A,h(x). We 

claim that X,, M,, and r, satisfy Lemma (1.2). So for x E X, we must produce a 

sequence {S~,(x)}. Let  S , ( x ) =  TK~x~(x). (Kin(x) as in Definition (1.3) III3 

For  (a) of Lemma (i .2) first note that by Remark (ii) Tj+,(x) - Tj(x) <= tl4,11 for  

any j. Thus 

Km+l(x)--I 

O<=S. .+, (x ) -S . , (x )  = ~'~ T j + , ( x ) - T j ( x )  
j=Km(x)  

<= (K,. + , (x ) -  Km (x))ll4,1l 

by III(a): _<- M.II4,II = <ME.  

And 

So(x) = Tr~x,(x ) <= 0 < Tr,(x)(x ) = S , (x  ) . 

The proof  of (b) (of Lemma (1.2)) is an approximation argument. To expedite 

matters we state a useful fact: 

LEMMA 1.6. I f  a~ >- O, c ,  d ,  e~ > O, a~ <= e, and Ic~ - d, I <= 3c~ for i = 1 , . . . ,  m, 

then 

E a,c~ E a~d, I <= 28 
E e,c, E e~d~ I 

PROOF. F i r s t  show that i u / v - w / y l < = 2 8  m a x { u / v , w / y }  if u, w=>0, v, 

y >-0, l u -  w[ <= 6u, and I v -  Yl <=By. Then reduce the lemma to this case. • 

Now we estimate 

For  brevity,  

l ( Sm(x ) 
! h o ~, (x)dt. 

Sm ( x )  - S o ( x )  ~ s~x, 

Km(x) - I  

E =  E " and E = E .  
j j=Ko(x) i lEA 

(A is the index for ~/.) Also we suppress dependence on x. 

1 fs ~ Ej f~+' h o ~, (x)dr 
(1) S m -  So o h o~b,(x)dt = ~,~(Tj+,- Tj) 

Since ~ is 8-good, for  t E[Ti ,  T~+,],tp,(x)EAb,, and since diamAb, < 8 ,  we 

have Ih o ~b,(x) - ab,]-< e. Thus, 

h o~b,(x)dt -a~,(Tj+~- ~ e (Tj+~- Tj). 
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Thus, 

E~f~ +' h o~b,(x)dt ~ja~j .(T~.,- Tj) 
(2) x~(~+,- T,)  - E~(Tj+,- ~ )  _-<e. 

And by Lemma (1.6) and Remark (iii) (recall ~b~--< IIh]] ~ 1): 

[ E i o %  • ( T j  +, - T ,  ) _ Eio~,,, • 3,,~ i (3 ) =< 28 < 2e, I E~(Z+,-  Ti) EJBb, I 

(4) Ejo% •/3~ i = E,a43,r/.. • (Kin - Ko) _ E,a,/3i*/,~ 
Ej/3b, E,/3,~/,~ • (K,. - Ko) E,/3,n,~ " 

And by Lemma (!.6) and Condition III (b) of Definition (1.3): 

E,~,3m,., E,-,/3,r, I 
(5) E,3,n,m E,f3,r, <-_26 < 2e . 

Putting (1)-(5) together with the triangle inequality 

Sm I fs s- - So h oqj , (x)dt -r~ < 5 e ,  
o 

completing the proof of Proposition 1.5. 

2. Axiom A background 

Let f:  M ~ M be continuous. The non-wandering set 

N W ( f )  = {x E M: U N ( U ,>of"U) ~ Q for all neighborhoods U of x}. 

Let  f :  M---~M be an Axiom A diffeomorphism [16] on a compact connected 

Riemannian manifold. This means 

(a) Over N W f f ) ,  the tangent bundle splits into a continuous sum of two 

invariant (under DD subbundles, one of which (E ~ ) is expanded, the other (E ~ ) 

contracted. 

(b) The periodic points of f are dense in N W ( D .  

We take advantage of the stable manifold theory for f developed by Hirsch 

and Pugh [9]. For x E N W ( f )  and ~/> 0, let 

W ~ ( x ) = { y E M :  d ( f " y , f " k ) < v  for n 5 0 }  

W ~ (x) = {y E M: l im dif"y,  fnx ) = 0} 
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W ~ ( x ) = { y E M : d ( f " y , f " x ) < - y  for  n_<-0} 

W"(x) ={y E M :  lim d(f"y,f"x)=O}, 

called the local stable, stable, local unstable, unstable manifold resp. (d is a 

Riemannian metric). 

FUNDAMENTAL FACT 2.1 [91. There is a Riemannian metric d and constants 

3 ' > 0 , 0 < , ~  <1  such that 

(i) Each W~,(x) and W~(x) are smoothly embedded disks tangent to E~, E7 

respectively. 

(ii) for  n =>0 if y, z E W ~ ( x )  then d(f"y,f"z)<=,~"d(y,z), 

for  n =<0 if y, z E WY,(x) then d(f"y,  f"z)<=A"d(y,z). 

(iii) (Canonical Coordinates) There exists a > 0 such that if x, y E NW(f)  
and d ( x , y ) < a  then W'~(y)nW~(x) is a single point [y , x ]~NW(f ) ;  
moreover  the map 

[ . , -1 :  (W~,(x) n NW(f))x(W~,(x) n NW(f)) ~ NW(f)  

is a homeomorphism onto a closed neighborhood (in NW(/)). 
(iv) (Expansiveness) y is an expansive constant,  i.e., if d(f"x, f"y) <= y for  

all n then x = y;  equivalently, given e > 0 there exists n = n (e) such that if 

d(f~x, fy) -<_y for lil <- n, then d(x, y) < e. 
This has some interesting consequences.  For  example,  if u =< 3'; then 

W ~ ( x ) =  B , ( x ) n  W~(x) (B,(x)= ball of radius u about x) and W " ( x ) =  

U ,  ~of" W~ (f-"x).  This makes W" (x) an immersed submanifold. Similarly for  

W s. Note  that W" and W ' are transverse with complementary dimensions. 

Also, [W"(x )= W"(fx), and if y E W"(x) ,  then W " ( y ) =  W"(x). 

NOTATION. For  A, B C X sufficiently close, [A, B ] = {Ix, y ]: x E A, y ~ B}; 

W"(x ,A)= W~,(x)AA; WS(x,A) = W~,(x)AA. 
Let X C N W ( f )  be a basic set (i.e. closed, / - invariant  and has a dense 

f-orbit) .  The study of fl× has benefited from R. Bowen's  construction of 

Markov partitions [2]. Let  8 > 0  be small (much smaller than a or y).  A 

Markov partition of size 8 is a collection of subsets of X, d,t = {A~},N., such that 

(i) d/t covers  X and each diam A~ < 8. 

(ii) E a c h A ~ =  Cl ( in t  A~). 

(iii) (Rectangle Property)  x, y E A~ implies Ix, y] E A~ (8 is assumed small 

enough so that this makes sense). 
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(iv) For  i ~ j, A~ n Aj = oA~ n cgAi. 

(v) (Markov Property) if x E i n t  A ~ n f - ' i n t  Ai then fW~(x ,A~)C 

W ~ (fx, At ) and [ W  ~ (x, A~ ) 3 W ~ (fx, Ai ). 

Each A, is called a rectangle. Note that the rectangles are allowed to meet on 

their boundaries;  so this is not literally a partition. 

FACT 2.2 [2]. Markov Partitions of arbitrary small size exist for  fl×. • 

Let  a ' A , = { x ~ A , ' x ~ i n t  W"(x,A,)}, a ~ =  ~J a'A, 
i = l  

?4 

a"A, ={x CA,"  x ~  int W~(x,A,)},  a " ~  = U a"A, 
i = 1  

(the interiors above are taken relative to W~(x)  and W~(x)).  

FACT 2.3 [2]. (i) Each OA, = O~A, U O"A,. 

(ii) fO s~t C 0 s~. 

(iii) f a " ~  D a " ~ .  • 

NOTATION. a ~  = U T = , a  A, = a " ~ u a " J , , I  and i n t ~ / =  U7=1 intA,. 

The importance of a Markov Partition is that it allows one to use symbolic 

dynamics. We describe this as follows: 

Let  C = (C,) be the N x N matrix defined by 

{1 if intA, n f - '  ( i n t A ; ) ~ O }  
C~i = 0 otherwise 

C is the partition matrix for  ~ .  Let Zc denote the set of all doubly infinite 

sequences _x = (x~)~-S_~ such that a ...... = I for  each i. Let  ar : Ec ~ Ec be the left 

shift (tr(_x)), = x,+,. (A subshift of finite type.) 

FACT 2.4 (Symbolic Dynamics) [2], [3]). 

(i) There is a continuous onto map zr : Ec ~ X such that f o ~r = 7r o tr. 

(ii) 7r(_x) ~ Axo and if x E A,  then there exists x E Ec such that Xo = i and 

#(_x) = x. • 

We now describe the context  we're interested in. An attractor X for an 

Axiom A diffeomorphism f is a basic set for  which there exists a neighborhood 

U in M such that n .~of"U = X. A consequence  of this is that for  each x ~ X, 

W " ( x )  CX.  Thus {W"(x):  x E X} (the W" foliation) partitions X into smooth 

immersed submanifolds with continuously varying tangent spaces {E T}. For  

the remainder of the paper: 
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STANDING ASSUMPTIONS 2.5. (1) X is a connected a t t r a c to r .  

(2) E "Ix is orientable. 

(3) E"I× is l-dimensional. 

With assumptions (2) and (3) one may define a continuous flow {~b,} on X 

whose orbits are the unstable manifolds W" (x) [18]. This is what we mean by 

saying that the W" foliation admits a flow. We call the flow a W" flow. Of 

course there are several such flows (with different parametrizations), but by 

definition they all have the same orbits. Hence if one is uniquely ergodic, then 

so is any other [l l]. In view of this we could select any convenient W" flow 

(e.g. parametrization by arc length) but that has no real advantage. 

THEOREM 2.6. Under the standing assumptions (2.5) the W" flow is uniquely 
ergodic. 

Note that the connectedness assumption is required to eliminate some 

immediate counterexamples; for example, one could just create a new attractor 

from the union of two disjoint connected attractors. An important consequence 

of the connectedness assumption is that X is a C-dense basic set for [ [4]. This 

implies 

FACT 2.7 [4]. (i) Each W"(x) is dense in X. 

(ii) [Ix is topologically mixing (whence C K has all positive entries for some 

K)  (see [Remark following Proposition 30, 2] and [1.3,5])..f will mean f Ix- 

3. Proof of main result 

We will use the condition of Proposition 1.5. Our boxes will be the rectangles 

of a Markov Partition. First, we will improve our picture of Markov Partitions 

using part of the standing assumption (2.5). 

DEFINITION 3.1. A Markov Partition ~ is U-connected if each W" (x, Ai) is 

a (non-trivial, closed, connected) arc (non-trivial means that it isn't a single 

point). 

LEMMA 3.2. There exist U-connected Markov Partitions of arbitrarily small 
size. 

REMARK. D. Pixton helped us on this point. 

PROOF. This relies heavily on the fact that X is an attractor and W"(x) is 

one-dimensional; for otherwise W"(x, Ai) will be badly disconnected. 
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First note that we can find M (of arbitrarily small size) such that each 

W"(x, A~) has only finitely many components ;  to see this follow the construc- 

tion of Markov Partitions [2] (there, on p. 731, under our assumptions we can 

choose C O connected;  in Lemma 16 then, C~ will be connected and then in the 

end W"(x, E) will have a finite number of components) .  Now we just create a 

new Markov Partition by separating the components ;  namely, for  each A, E M, 

let x~ CA,  and W~., W~2," . ,  W~k, be the components  of W~(x, Ai). Note that 

since A, = CI (int A,) and A~ is homeomorphic  to W" (x, A,) x W s(x. A,) via 

the canonical coordinate map (2.1) (iii), each W, must be a non-trivial closed 

connected arc. Let  ~t '  ={A,j}, where A~j =[W~j, W'(x,A,)] .  This is a U- 

connected Markov Partition; we omit the details except  to note that, for  x E A0, 

W" (x, A~i ) = [ W~j, x ] and W" (x, A~j ) = W ~ (x, A~ ). Also M'  is a refinement of M. 

REMARK 3.3. For  a U-connected  Markov Partition, each c3SA~ consists of 

exactly two stable fibers WS(x~,A~) and W'(x~,Ai); each W"(x ,A, )N aSA~ 

consists of exactly two points (the endpoints,  Ix ], x] and Ix ], x ]) (see [Lemma 

10, 2]; in fact  W"(x,A~)N cgsM is a finite set, for  each W"(x ,A, )N W'(xT, Aj) 
(j = 1 , . . .  N, v = 1,2) is either empty or a single point). 

PROPOSITION 3.4. Any U-connected Markov Partition of size ~ is g-good. 

PROOF. We must check (1.3) (I), (II), and (III). Of course (I) is immediate. 

To construct  X . ,  first let p be a periodic point in int M (although at the outset 

one knows only that the periodic points are dense in NW(f) ,  they must also be 

dense in X;  see, for  example,  Smale's Spectral Decomposit ion [16]). 

DEFINITION 3.5. 

k - ]  k - - I  

X , =  U W"ff~P) = U f 'W~(P) 
i = 0  i = 0  

where k is the period of p. Note that X .  is both f- and @- invariant. It is dense in 

X since W"(p)  is (2.7). 

We will now check (II). First, note that {f'p : i E [0, k - l]} (the f- orbit of p ) is 

contained in int M. For  suppose that f'p ~ aM = O"M U OsM (see (2.3)). 

If f~p E 0 ~M then p = ff-~f~p E f~-iO sM C 0 sM. 

If f'p E a"M then p = f-if~p E f-'~ uM C O"M. 

In either case p ~ OM, a contradiction. 
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Next  note that if x E X .  then W"(x)N~9"J/  = O .  For  this, it suffices to 

assume x = p, [p,. . . ,[~-~p. So x is a periodic point of period k in int A for 

some A E ~ .  So there exists 1, > 0 such that B~(x), the ball of radius t, about x, 

is contained in intA. Thus W ~ ( x ) =  B~(x)O W~(x)CW"(x ,  intA).  (See re- 

marks after  (2.1).) So, 

(6) WU(x) = U [k 'W~(x)= U [k'W"(x,  intA).  
n ~ O  n ~ ' 0  

Since (int A ) n a"J~ = 0 ,  we have by (2.3) that for  n => 0 

W" (x, int A ) N [-k, cl " ~  = Q. Thus [k, ( W ~ (x, int A )) O ¢9 ~ = Q. This and (6) 

above yield W"(x) n c ~  = Q as claimed. 

Recalling notation in (1.3) (II), if x E X . ,  B+(x)= {t => 0: ~,(x) belongs to 

more than one A ,}={ t ->0 :  #, , (x)E tg'~t}, the last equality holding since (i) 

rectangles meet only on their boundaries,  (ii) tg~ = a " ~  U ¢9"~t and (iii) 

WU(x)n  ¢9"~ = 0 .  Now B . ( x ) / Q  since one of the two points comprising 

W" (x, A,) n c9 SA, must be in the positive semiorbit of x. Similarly, B_(x ) ~ 0 .  
Note  that a ' ~  consists of finitely many subsets of embedded disks trans- 

verse to W"(x) with complementary dimension. (Namely {W'(xl~,A,)}U 
{W'(x~,A~)} as in (3.3.) Since t ~ ~,(x) is a continuous parametrization of 

W"(x), it follows that {t: ~ , ( x ) E  tg"J/} is discrete. Thus B+(x) and B_(x) are 

discrete. This gives (IIa). 

For  II(b) recall that B+(x) U B_(x) = {T,(x)} (as in (1.3); if T~(x) < t < T/+,(x), 

then ~,(x) E i n t ~ ;  since {~,(x): t ~ (T/(x), T/+t(x))} is connected,  it and hence 

its closure is contained in some A,  called Ab/~. This is (lib). 

We now derive an easy consequence of W " ( x ) n  ¢9"~ = Q for x E X . ,  

which shows that W" (x) has a unique representation as a union of W" (y, A~)'s. 

For  brevity let W/(x) = {4J,(x): t ~ [T/(x), T/+,(x)]}. 

LE~MA 3.6. (i) I[ y E A, n W"(x) then W"(y,A~)= W~(x) /or some j. 

(ii) W"(~r~,(x) ,  Ab,~x,)= W~(x). 

PROOF. First note that if W " ( y , A , ) C W " ( x ) ,  then W " ( y , A , ) n t g " ~ =  

W" (y, A, ) n c9 "A, (the two endpoints of W" (y, A, )), for if z E W" (y, A, ) - cg"A, 

then z E int W"(y,A,)  (rel. W~,(y)) and since z ~  ~9"~, z E int W'(y ,A, )  (rel. 

W.~(y)), whence z would have to be in intA~ (by canonical coordinates (2.1) 

(iii) and the rectangle property for  A~). 

(i) Since W" (y, A~) is a closed connected subarc of W" (x) and by the above 

W " ( y , A , ) n c g ~ t  = its endpoints,  we have by definition of {T/(x)} that 

W" (y, A~) = Wi (x) for some ]. 
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(ii) By (i), W"(tkr~x)(X), Ah,~)) = Wj(x)  for  some J. But by definition of Ab~> 

and the fact that W;(0r~>(x)) is  an arc containing tOr~>(x) in its interior, there 

must exist e > 0 such that 

W"(tOrtx)(x), Ah,<~)) = A~x)n  W"~(Or,<~,(x)) D {tO,(x): 

t E[T~(x) ,T j (x )+e]} .  

Thus J = j as desired. 

We will now verify (III) of (1.3). This is the crux of the matter. To get an idea 

of how each W"(x )  is distributed we see how f "W"( f -"x ,A~)  is distributed 

among the rectangles (after all, f "W"( f -"x ,A~)  is a big chunk of W"(x)) .  Our 

counting is done on the symbolic level in Lemmas (3.7) and (3.10). From here 

through (3.10) there is actually no need to assume that any of the points we 

consider belong to X . .  

Let  S(n , l )  denote the set of all sequences a = a _ ,  a , + , ' " a o  such that 

a _ , = l  and Coj,,+,=I for  j :  - n - < i - < _ - I  (where C=(C~i)  is the partition 

matrix for  ~ ) .  

LEMMA 3.7. Let n > 0 and z E A, ~ M. For each a E S(n , I )  there exists 

z ° E A,o such that 

(i) f " W " ( z , A , )  = U ,~s,,.,, W"(za, Aao), 

(ii) for a, a ' ~  S (n , l )  a ~  a', W"(z",A,o) is distinct from W"(z"',Aao). In 

fact, they meet only in their endpoints, if at all. 

For this we will need two preliminary facts. 

For  _x E Ec let U(_x)= {y E Ec:y ,  = x,, i _-< 0} and S(_x)= {y E Yc:y, = x, for  

i -> 0}. Note  that if Xo = yo then U(x)  n S(y )  is a single point. 

SUBLEMMA 3.8. 1r(U(x)) = W"(~(_x), Axo). 

PROOF. By (2.4),for any n, f"o~-"(_x)=~-oo-"(_x)EA,. .Thus,  if y E U(_x) 

then for n =<0,f" o~-(y) ~Ayo =Ax.. So for  n =<0, d ( f "o~r (x ) , f "  o~r(y))N 8 < T  

(recall that the size 8 was assumed to be < y). Thus I t (y)  E W;(rr(_x)). And by 

(2.4) (ii) ~r(y)EAyo = A,o. Thus 

rr(y) E W;( r r (x) )  n A~o= W"(rr(x_),A,~). 

For the other half, let y @ W"(rr(_x), Ax.). By (2.4) (ii) we can find y E E c  

such that yo = Xo and rr(y) = y. Let  y '  = U(_x) n S(y) .  Now 

~-(y') E 7r(U(_x)) N rr (S(y))  C W" (~-(_x), Axo) n W'(Tr(y),  Axo) 
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(since zr(U(_x))C W"(zr(x) ,  A J  as proved above  and z r (S(y) )C  W'(~r (y) ,  A,~) 

as proved  analogously).  But then y = [y, rr(_x)] = [zr(y), zr(_x)] = zr(y ')  (the first 

equality since y was chosen in W"(zr (x ) ,A~) .  Since y ' E  U(_x) we have 

y = 7r(y') ~ rr(U(_x)) as desired. • 

SUBLEMMA 3.9. Let  x_, y E Ec with 7r(_x) = ~r(y). I f  x - ,  = y_. for some n > 0 ,  

but x_j~  y_j for some j: O<-j < n, then 7r(x_)E 3"~.  

PROOF. Choose n > 0  such that x_, = y_., but x - ,+ t~y - ,+ . .  By (2.4), 

f - " ( T r ( x _ ) ) E A x . n A y . = A x _ ,  and /-"+'(Tr(_x))EA . . . .  n A y  .. . .  . Then by 

[Dual Version of L e m m a  6,3], f - " ÷ ' ( T r ( x ) ) ~ O ' ~ .  Thus lr(_x)= 

f" ~f-"+'(Tr(x_))~f"-~O'Jl C3'AL since n - 1 ->0. • 

PROOF OF LEMMA 3.7. Choose z E Ec such that Zo = 1 and 7r(_z) = z. By 

(3.8), W " ( z , A , )  = 7r(U(_z)). Thus 

(7) f " W " ( z , A , )  = f "  o 7r(U(_z)) = 7r o o'"(U(_z)). 

For  a E S (n , / ) ,  let _z" E Y~c be defined by 

z T = a j  for  - n = < j = < 0 ,  

z T = z i + ,  for  j < - n ,  

and for  j > 0 choose z7 in any way so that _z a ~ Ec ; this is possible since there 

exists  a, such that Caoa, = 1, etc. (See the definition of C preceding (2.4).) Then 

cr"(U(_z)) = U a~S,..,, U(z_~). So this, (7), and (3.8) imply 

f " W " ( z , A , ) =  U ~r(U(_z"))= U W"(Tr(z_°),A.o). 
a E S ( n , I  ) a E S ( n , I  ) 

This gives (i), with z" = ~'(_za). 

For  (ii) note that if z EW"(Tr(z_~),A~o)nW"(~r(z_°') ,A,o),  a, a ' ~  

S(n,  l), a ~ a ' ,  then z = 7r(_x) = 7r(y) for  some _x, y satisfying the hypothesis  of 

(3.9). Thus z E a ' ~ .  Since 0 ' ~  meets  W"(zr(_za), A~o) in a finite set (see (3.3)), 

W"(~r(_z°), Aoo) and W"(~'(_z"', Aa:.) must  be different. • 

The following version of the Perron-Frobenius  theorem is the technical tool 

we use to do our counting. Let  C)Y denote the (l, i)th entry of  C ' .  

LEMMA 3.10. There exist r~,. • •, rN > 0 such that E~=~ ri = 1 and for all 1 

and i in { 1 , . . . , N }  

c ( n )  
ti 

lim ~N ~,<.~ = r~. 
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PROOF. First note that there is an integer K such that C k has all positive 

entries (2.7) (ii). 

Let  C ,  be the transpose of C. Now the Perron-Frobenius  Theorem [I] 

asserts that C ,  has a unique positive eigenvalue A with eigenvector  r = 

( r , , . . . , r ~ ) ,  r~ =>0. We may assume E~-, r~ = 1. Since C ,  has all positive 

entries, each r, > 0  and for each v = ( v , , . . . , v N ) ~ 0  with v ~ - 0 ,  there is a 

scalar dv > 0  such that " K. K. hm,~=(C ,  v/A )=&r  (component-wise).  This is 

essentially [Theorem 4, p. 292, 1]. Applying C ,  to both sides of this equation K 

times, we get l im .~=(C ,v /A" )=  &r. Now let ][vii = Z~=, v. with v as above.  

Then lim.~(HC, v[[/a")= &l[r[[ = d~. Thus 

,;,., C~v , .  C;vla" 
= n m  ,, ,, = r .  

:'::: II c >  l! . - =  II !1/* 
Apply this to the vector  v t = (v, , .  •., vN), where v~ = 1 and v~ = 0 for j ~  I. This 

gives 

lim '-'" vN ~ = lira r~. 
. . . . . .  . . . .  fl If- 

Now let r,, •. •, rN be as in (3.10). Fix n > 0 an even integer such that for  all l 

and i 

I CIT~ r~ 
r(" ) < t~ri . (8) 2~=, ~ , .  

Let  M ,  = max,<__t~N E.N=~C}~ "~. We claim that M ,  and the r~ satisfy (1.3) (III). S, 

given x ~ X , ,  we must produce {K,. (x)} satisfying (IIIa) and (IIIb). 

Now recall the definition (3.5) of X , .  Since X ,  is / - invariant ,  [-"x E X 
Consider W,(f-"x) (as preceding (3.6)) for  some integer q. As in (3.7), there 

exist z", a E S(n,l) (where I = bq([ "x) and z = qJT,~i-"~,(f "x) such that 

U W"(z",Ao~)=f"W,(f-"x)CW"(x). 
uES(n , I )  

By (3.6) (i), for  each a E S(n, I) there is a ] such that W"(z ", A~o) = W/(x). This 

defines a map P:  S(n,l) -~ Z by P(a) =j .  Now note that P is 1 - I and maps 

onto an interval of integers [K,, Vq ]. The former  follows from (3.7) (ii) and the 

latter f rom the connectedness  of ["W, ([-"x) (recall that W, ([-"x) is connected 

by U-connectedness) .  In fact  Vo = Kq+l- I since f"W,(f-"x) and f"W~+,([-"x) 
have exactly one point in common and f" preserves the orientation of the flow 
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(recall that n is even and X connected).  Since WU(z",A~o)= Wp~a~, we have 

ao = be~. Thus, since P is 1 - I onto [Ko, Kq+~ - 1], 

CA {a E S(n,/): ao = i} = # {j ~ [K,, Kq+t -  1]: b~(x) = i} 

and the former,  by a computation,  is CI?', the (I, i)th entry of C". Thus 

N 

(9) Kq+,- Kq = ~ # {j E[Kq, Kq+,- I]: bj(x)= u} 
u = l  

N 

= ~ clz'.  
u = l  

And so 

# { j ~ [ K q ,  Kq+, - I ] :b j ( x )= i }  r,~.~ 
- -  v~-" l i  

(10) Kq+, -  Kq ~.=,~I.VN .-.,-~ 

and by the way n was chosen (8) this quantity is within 6r, of r,. 

Now define Kin(x)= Km. Then with r l~(x)  as in (1.3), 

r/,,, ( x ) =  E~'=-~ CA {j E [Kq, Kq÷ , -  1]: bj(x)= i}. 
ET=d(K~+, - Kq ) 

that rl,m(x) is within 6r~ of r~ follows from (10) and: 

ARITHMETIC INEQUALITY. If dq,_-> 0, eq > 0 for q = 0,.  • •, m - 1, then 

min d__~q < Zdq < max dq 
eq - Eeq e-~-" 

PROOF. The middle expression is a weighted average of dq/eq. • 
This gives III(b) of (1.3). 

For  III(a): by (9), Kq+~ - K,  = E~=~ C)~ ~. Thus 0 < Kq+~ - Kq _-< M , .  As for 

Ko, note that [-"x E Wo(f-"x); thus 

K I 

x e f "Woq  "x)= L) wax). 
] = K o  

(The latter equality comes from the definition of Ko and K,.) So Ko =< 0 < K~. 

This completes the proof  of (3.4). • 

To get a 6-great collection we refine d~. What will make this work is the 

following: 

DEFINITION 3.1 1. For  ~ U-connected and Ai E ~ define Li: Ai ~ R + by 

L,(x)  = t2-t~, where WU(x,A,)={~b,(x): t E [tl, t~]}. • 
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REMARK 3.12. L, is continuous. For  this let O'Ai = WS(xti, A~) 

U Ws(x~,A~) (as in (3.3)). If x E A,, then [xT, x] = +,r(x) for  some t~, v = 1,2. 

Then L~(x) = lt~ - t~J. That the map x ---> t~ is continuous follows from the fact 

that each W ' (x ~, Ai), being transverse to the flow, is a local cross-section [ 13]. • 

Let  J /  be a U-connected Markov Partition of size 6. For  a = a o " "  a,, let 

An = ('1 ~_of~Aoi. Let 

~ . = { A o :  A f J ( in tA,~)~Q} ( = J d v f ~ v . . . v [ " ~ ) .  
i=0 

LEMMA 3.13. (i) JJ, is a U-connected Markov Partition of  size 6. 

(ii) For A ,  ~ JJ,, W" (x, A,)  = W" (x, A J .  

PROOF. For  n = 2, repeatedly apply [Lemma 26, 2], and then proceed by 

induction. • 

PROPOSITION 3.14. For su~ciently large n, Jd° is &great. 

PROOF. By (3.13) and (3.4), JJ, is &good.  So we must verify (IV) of (1.4), for  

= JJ,, some large n. To see how large: first let L = min~,~A, G ( x )  > 0 (G as 

in (3.1 I)). By (3.12) there exists ~ > 0 such that if x, y C A~ and d(x, y) < e, then 

IG(x ) -L~(y ) I<=6L.  By expansiveness (2.1) (iv) there exists n such that if 

d(f~x, fJY) <= 3' for  []l =< n, then d(x, y) <= e. For this n, we claim that ~ ,  will do, 

as follows. 

First note that 

(11) if x ,y  CAo E ~ , ,  then IL~o(x)-L,o(y)[<=6L. 

To see this, first note that [x, y ] E A, (rectangle property),  whence for 0 _-< ] =< n, 

both f-ix, f - i[x ,y]EAo~,  whence d(f-Jx, [-J[x,y])<=6 < 3'. Also, since 

[x, y ] E W" (x, Ao) C W~ (x), we have d (fix, f~ [x, y]) _-__ 3' for all ] --- 0. By the 

way n was chosen,  d(x, [x, y]) < e and thus ILoo(x)  - L.o([X,  Y])I - ,~L. But Loo is 

constant on W'(y,A~o). So Loo(y)= Lao([x, y]). This gives (11). 

Let  X*,  {bj(x)}, {T~(x)} be as in (1.3) for  M = ~ , .  By (3.6) (ii) applied to ~ , ,  

recalling To(x) <- 0 < Tj(x),  we get W"(x,  A~o(~) = {G(x):  t E [To(x), T,(x)]}. By 

(3.13) (ii), W"(x,  Abo,3 = W"(x,A,o),  where b o ( x ) = a o . . . a , .  Putting these 

together and recalling (3.11), we get L,o(X)-- T i ( x ) -  To(x). And by the defini- 

tion of $ in (1.4), this is also ~b(x). Thus, if bo(x) = bo(y) = a o "  • a,, then by (11) 

we have 

16(x) - 4 , ( y ) l  --  ]Loo(X) - Lao(Y)] <= 6L <= 6L~o(X) = 6cb(x). 

So J~. is &great .  • 

Propositions (1.5) and (3.14) complete the proof of (2.6). 
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4. Equicontinuity 

A flow is called minimal if every orbit is dense. Although limiting time 

averages (1.1) are invariant along orbits, they are not necessarily continuous. 

So a minimal flow need not be uniquely ergodic (see [13] for  an example of 

this). However ,  if a minimal flow has the additional property that once two 

points start close, they stay close for all time, then it will be uniquely ergodic. 

DEHNmON 4.1. A flow {t~,} is equicontinuous if {tOt} form an equicontinu- 

ous family of homeomorphisms.  • 

Note that, in contrast  to both unique ergodicity and minimality, this concept  

depends not just on the orbits but also on the parametrization of the flow. For  

example,  one could reparametrize a rotation of the torus (which is equicontinu- 

ous) to get a non-equicontinuous flow. (View it as a suspension of a rotation on 

the circle.) Nevertheless ,  

LEMMA 4.2. Every minimal equicontinuous ]low is uniquely ergodic. 

PROOF. This is a direct modification of the corresponding result for  a single 

homeomorphism [1.2, 7]. • 

In view of this one might ask if W" flows are more than uniquely ergodic, 

i.e., are they equicontinuous? Since equicontinuity depends on the parametri- 

zation, the question is more properly formulated: Under  (2.5), do W u foliations 

admit equicontinuous W" flows? Well, some don't .  In fact,  

(4.3) Any compact metric space which supports a minimal equicontinuous 

flow is an abelian topological group. 

(To see this as in [p. 131, 17], define a multiplication on a single orbit {~bt (x)} by 

q~, (x) * tps (x) = tOt+s (x); now extend this to the whole space by equicontinuity of 

{q,t} and denseness of {q,t(x)}.) Now it is known that some l-dimensional 

attractors satisfying (2.5) are not homogeneous [21J - -hence  not topological 

groups. Since W" flows are minimal (2.7), we have by (4.3) that in these cases 

they couldn' t  be equicontinuous. We give a specific example of this at the end 

of the section. 

However ,  a large class of W u foliations do admit equicontinuous W u flows. 

Let  f be a codimension one Anosov diffeomorphism (with dim E"  = I) [6]. This 

is just the case of assumptions (2.5) with X = M. (That N W f f )  = M follows 

from Newhouse  [12]; that E"  is orientable follows from (4.5) below.) 

THEOREM 4.4. The W ~ foliation o[ a codimension one Anosov diffeomorph- 

ism (with d i m E  u = 1) admits an equicontinuous W" flow. 



Vol. 21, 1975 UNIQUE ERGODICITY 129 

PROOF. First note that if g and f are topologically conjugate (i.e., there is a 

homeomorphism h such that g -- h of  o h-l)  then the conjugating map h sends 

the unstable manifolds o f f  onto those of g. Thus if {t~,} is a W u flow for the W" 

foliation of f, then 0 , - h o O ,  oh i is a W" flow for g. Morever ,  if {4~,} is 

equicontinuous,  then so is {0,}. 

Thus, given a codimension one Anosov diffeomorphism g it suffices to find 

an f, whose W" foliation admits an equicontinuous W u flow, and is topologi- 

cally conjugate to g. For  this, 

THEOREM (Franks [6], Newhouse  [12]) 4.5. Every codimension one 

Anosov diffeomorphism is topologically conjugate to a hyperbolic toral au- 

tomorphism f (i.e., a map of the torus, T"=  R"/Z" induced by a linear 

transformation on R ~ given by a matrix A with integer entries, no eigenvalues on 

the unit circle and det A = +_ 1). 

Now the unstable manifolds for  [ are the images (via natural projection 

P: R" ~ T")  of a 1-dimensional subspace E (of R") and its translates. P(E) is 

a one-parameter  subgroup of T" (with the inherited group structure), and the 

W" flow {q~,}, defined by translation by the subgroup P ( E ) ,  is equicontinuous 

since T" has a translation invariant metric. As noted before,  this implies the 

same for {tp,}. • 

REMARK 4.6. (4.4) and (4.2) give another  proof of (2.6) in this case. 

For  the remainder of this section, we sketch an example of a one dimensional 

attractor whose W" foliation satisfies (2.5) but does not admit an equicontinu- 

ous W" flow. The model for  these attractors is the generalized solenoid ([19]): 
g g g 

the space X is the inverse limit system K ~--K ~--K ~ - K  . . . ,  where K is a 
branched 1-manifold and g : K ~ K satisfies 

(4.7) (i) g is an expanding immersion. 

(ii) N W ( g ) =  K. 

(iii) Every point of K has a neighborhood whose image under g is an arc. 

(More liberal conditions are given in [20].) The shift map f :  X ~ X 

ff(Xo, Xl,X2,." ")= (gxo, Xo, X~,X2...)) can be embedded as an at tractor for  an 

Axiom A diffeomorphism [19], and E"  [× is one dimensional. If K is connected,  

so is X. If K is orientable, then an orientation on K determines one on E u Ix, so 

that the projection (from W"(x)  to K via the zeroth coordinate map) is 

orientation-preserving. So under these two assumptions, f :  X ~ X satisfies 

(2.5). 
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Roughly, the foliation may fail to admit an equicontinuous W" flow because 

the paths traced by projections of two unstable manifolds are likely to 

eventually diverge at the branch points in K. To illustrate, let K be the 

topological wedge of two circles e~ and e2 with the (positive) orientation 

indicated in Fig. 1. Our map g : K ~ K is an expanding, orientation-preserving 

immersion which fixes p, expands and wraps e, first around e~, then e2, then e~ 

again, and wraps e2 around e~ twice. So g - ' ( p )  consists of p and three other 

points q, r, s as indicated in Fig. 1. So g maps the positively oriented arcs 

determined by these points as in Fig. 2. Note  that g satisfies (4.7) (for (ii) 

observe that any subarc is eventually mapped onto all of K) .  

q . , 

r 

Fig. 1 

S 

We make some 

g:  [pq] ~ e, 

[qr] ~ e2 

[rp ] - ,  e, 

[ps] --, e, 

[ so l  -~ e, 

Fig. 2 
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DEFINITIONS 4.8. (i) By  a positive path we m e a n  a con t inuous  pos i t ive ly  

o r ien ted  ( locally 1-1) m a p  tr: [0, T] --> K, 0 <  T <  + ~  (or ~r: [ 0 , + ~ ) ~  K ) .  

(ii) Since or fo l lows  the or ien ta t ion  of  K it c an ' t  double  back ,  and so if 

o-(0) = p  = o-(T)  (or jus t  o-(0) '= p if o-: [0 ,+  ~ ) ~  K ) ,  o- d e t e r m i n e s  an (or- 

dered)  word  9" (poss ib ly  of  infinite length) in the s y m b o l s  el and e2. 

(iii) An initial segment (I.S.) of  a pos i t ive  pa th  o- is ano the r  pos i t ive  pa th  a 

such that  a = tro/3 fo r  some  (or ienta t ion  p rese rv ing)  h o m e o m o r p h i s m / 3  f r o m  

the d o m a i n  of a into the d o m a i n  of tr, fixing 0. 

(iv) If  {4,} is a W" flow on X and z E X ,  define ~ z : [ 0 , + ~ ) ~ K  by  

toz(t) = 7r0o ~ , (z ) ,  whe re  7to: X ~ K is p ro jec t ion  on to  the ze ro th  coord ina te .  • 

N o t e  that  we  m a y  a s s u m e  that  each  q,~ is a pos i t ive  path.  

REMARK 4.9. I f  a is an I.S. of  q~, then  g"  o a  is an I.S. o f  q#-z. 

F o r  this,  use  g"  o 7r0 = 7to o ["  and the fac t  that  f p r e s e r v e s  the or ien ta t ion  of 

the flow (the la t ter  b e c a u s e  g p r e s e r v e s  the o r ien ta t ion  of  K ) .  • 

N o w  we go by  cont rad ic t ion .  S u p p o s e  that  {tp,} is an equ icon t inuous  W" 

flow. T h e n  {~-o o qJ,} is an equ icon t inuous  family .  So if x, y E X with 7r0(x) = p = 

fro(y) and x and  y are sufficiently close,  then  ~x = qJr ( look at K to see that  

tha t ' s  the only  way  ~x and tk, can s tay  c lose  toge the r  fo r  all t => 0). N o w  let 

x = (xi)i~o, y~°~ = (yl"~)i~o, whe re  

x~= p for  all i - - -0  

[ p  for  i = 0 , - . . , n  

( " ~ - ~ q  for  i = n + l  yl  -- 

t . any th ing  fo r  i > n + 1, 

p rov ided  y~"~ E X (such points  do exist).  Since y~"~ c o n v e r g e s  to x, we  have  that  

fo r  sufficiently large n (by the r e m a r k s  above) ,  lett ing y = y~"~, 

(12) to~ = tO,. 

L e t  ~ be  a pos i t ive  pa th  which  t r a v e r s e s  [qr]  once  (see Fig. 1). Then  a is an I.S. 

of  ~0t ..... ,. Le t t ing  a2 = g  o c~, we  have  by  (4.9) that  

(13) g"oa2 is an I.S. of  qJy. 

N o t e  that  o~2 is a pos i t ive  pa th ,  t r ave r s ing  e2 once.  (i.e., a2 = e~). 

N o w  let o~, be  a pos i t ive  pa th ,  t r ave r s ing  e, once .  E i ther  a ,  or  o~2 is an I.S. of  

0~, w h e n c e  b y  (4.9) e i ther  g o a~ or  g o a2 is an I.S. of  ~0i~ = qJ~. But  a ~ is an I.S. o f  

both  g o c~,, and  g o c~2; so c~, mus t  be  an I.S. of  to~. App ly ing  (4.9) again,  we  get 

(14) g " o a ,  i s a n I . S ,  of  to~. 

Put t ing (12), (13), and  (14) toge ther ,  we  get  that  bo th  words  g"  o a~ and  g"  o a2 
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are initial b locks  of  a c o m m o n  word $x = ~y. N o w  note  that g oa ,  = a ,  az  a ,  

( =  el e2 el) and g oc~2 = a l  a~ ( =  el e,). Thus  

g" oa ,  = ( g " - l o a z )  ( g " - l o a z )  (g" - loa~)  and 

g" o a 2 = ( g "  loo~,) ( g " - l o a l ) .  

Compar ing  these  we  see  that s ince  g" o ~  and g" oa2 are initial b locks  o f  a 

c o m m o n  word,  so are g"- '  o a2 and g"- '  o ot~. Cont inu ing  in d u c t ive ly  we  find that 

a l  = el and a~ = e2 are initial b locks  of  a c o m m o n  word.  Rid icu lous !  

REFERENCES 

1. R. Bellman, Introduction to Matrix Analysis, 2nd Edition, McGraw-Hill, 1970. 
2. R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 

725-747. 
3. R. Bowen, Markov partitions and minimal sets [or Axiom A diffeomorphisms, Amer. J. 

Math. 92 (1970), 907-918. 
4. R. Bowen, Periodic points and measures [or Axiom A diffeomorphisms, Trans. Amer. Math. 

Soc. 154 (1971), 377-397. 
5. R. Bowen, Equilibrium states and ergodic theory o[ Anosov diffeomorphisms, lecture notes. 
6. J. Franks, Anosov diffeomorphisms, Proc. Symp. Pure Math. 14, Amer. Math. Soc., 

Providence, R. I., 1970, 61-93. 
7. H. Furstenberg, Strict ergodicity and transformation o[ the torus, Amer. J. Math. 83 (1961), 

573-601. 
8. H. Furstenberg, The unique ergodicity of the horocycleflow, Recent Advances in Topologi- 

cal Dynamics, Springer-Verlag Lecture Notes in Math. 318, 95-114. 
9. M. Hirsch and C. Pugh, Stable mani[olds and hyperbolic sets, Proc. Symp. Pure Math. 14, 

Amer. Math. Soc., Providence, R. I., 1970, 133-163. 
10. N. Kryloff and N. Bogoliuboff, La th~orie g~n~rale de la mesure dans son application 

I'~tude des syst~mes dynarniques non lin~aires. Ann. of Math. 38 (1937), 65-113. 
11. B. Marcus, Reparametrizations o[ uniquely ergodic flows, to appear in J. Differential 

Equations. 
12. S. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math. 92 (1970), 

761-770. 
13. V. V. Nemytzkii and V. V. Stepanov, Qualitative Theory o[ Differential Equations, 

Princeton University Press, Princeton, 1960, Ch. V.2. 
14. D. Ruelle and D. Sullivan, Currents, Flows, and Diffeomorphisms, preprint. 
15. Ya. G. Sinai, Markov partitions and C-diffeomorphisms, Functional Anal. Appl. 2 (1968), 

64-89. 
16. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. 
17. P. Waiters, Introductory Lectures on Ergodic Theory, lecture notes, University of 

Maryland. 
18. H. Whitney, Regular families of curves, Ann. of Math. 34 (1933), 269. 
19. R. F. Williams, One dimensional non-wandering sets, Topology 6 (1967), 473--487. 
20. R. F. Williams, Classification of one dimensional attractors, Proc. Symp. Pure Math. 14, 

Amer. Math. Soc., Providence, R. I., 1970, 341-361. 
21. R. F. Williams, written communication. 

Current Address 
DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF CALIFORNIA UNIVERSITY OF NORTH CAROLINA 

BERKELEY, CALIFORNIA, 94720 CHAPEL HILL, NORTH CAROLINA 27514 U.S.A. 


